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The EdSurvey package gives users functions to analyze education survey data efficiently. This vignette
describes the methods used to estimate mixed-effects models with plausible values and survey weights in
EdSurvey.

Note:

New users looking for an introduction and overview of EdSurvey should see Using EdSurvey to Analyze
NCES Data: An Illustration of Analyzing NAEP Primer.1

Introduction

The EdSurvey package fits a Weighted Mixed model, also known as a multilevel, mixed, or hierarchical
linear model (HLM) using the WeMix package. The weights could be inverse selection probabilities, such
as those developed for an education survey where schools are sampled probabilistically and then students
inside these sschools are sampled probabilistically. Although mixed-effects models are already available in R,
EdSurvey is unique in implementing methods for mixed models using weights at multiple levels and allowing
plausible values in the dependent variable. For a full treatment of the mathematics behind survey weighting
mixed-effects models, see the WeMix package’s vignette.

Motivation

The principle advantage of mixed-effects models is the ability to appropriately model data with observations
that are nested into hierarchies. Educational data are often nested or clustered; we may observe students in
classrooms that are themselves nested in schools. To model an outcome with predictive variables measured
at different levels (e.g., to model student-level outcomes using classroom or school-level characteristics),
researchers often used mixed-effects models. Traditionally in a mixed model, fixed effects are used for variables
whose effect does not differ across clusters, whereas random effects (which may be slopes or intercepts)
are used to model variables that may have different effects in different clusters. Mixed-effects models are
particularly common in psychology and behavioral science (McNeish, Stapleton, & Silverman, 2017).

Although common in education research, mixed-effects models certainly are not the only way to handle
clustered data. Conventional approaches, such aslinear regression models, can still account for nested data
effects by including dummy variables for each group to mimic random effects, and researchers may use
cluster robust standard errors or the jackknife variance estimates to account for covariance within groups
(McNeish et al., 2017). However, although the jackknife covers variance estimation at the highest group level,
mixed-effects models may be preferable to regression models because they account for pseudoreplication when
estimating covariances and account for differences in cluster size when calculating standard errors. Moreover,
mixed-effects models more easily allow more complex group-level effects including slopes that differ by group.

∗This publication was prepared for NCES under Contract No. ED-IES-12-D-0002 with American Institutes for Research.
Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

†The authors would like to thank Paul Bailey and Mike Cohen for reviewing this document.
1Available online at http://www.air.org/sites/default/files/EdSurvey.pdf

1

http://www.air.org/sites/default/files/EdSurvey.pdf


For examples of how NCES recommends using weighted mixed-effects models, as well as their summary of the
mathematical background and description of hierarchical linear model’s insufficiency in this case see appendix
D in the NCES working paper on analysis of TIMSS data at https://nces.ed.gov/pubs2001/200105.pdf.

Fitting Mixed-Effects Models

To provide a brief recap, the mixed model in its simplest single-level form can be expressed as follows:

y = Xβ +Zu+ ε (1)

where y is the vector of outcomes, X is a matrix of covariates associated with regressors that are assumed to
be fixed, β is the vector of fixed-effect regression coefficients, Z is a matrix of covariates associated with
regressors that are assumed to be random, and u is the vector of random effects. The meaning of u being
random is simply that a level is shared within a group and across groups u ∼ MV N(~0, Σ), where MV N(·, ·)
is the multivariate-normal distribution, ~0 is the mean vector of all zeros, and Σ is the covariance matrix of
the MVN.

To generalize to the multilevel case, when there are more than two levels, eq. 1 can be rewritten as follows:

y = Xβ +
L∑

l=2
Z(l)u(l) + ε (2)

where a superscript (l) is added to Z and u to indicate that they are at the lth level. Note: In the summation,
l starts at l = 2 because random effects cannot be at the lowest level of observation (l = 1).

This model is then estimated using maximum likelihood estimation using adaptive quadrature following the
methodology of Rabe-Hesketh & Skrondal (2006) . Details can be found in the WeMix package’s vignette.

Adjusting Weights Before Fitting Mixed-Effects Models

As discussed in Rabe-Hesketh & Skrondal (2006), using unscaled weights in mixed models can lead to biased
estimates, especially when level-1 weights are very different from 1 and cluster size (e.g., the number of
students within a school) is small. The following are the two most common scaling methods for level-1
weights, named Method A and B for consistency with the literature.

Method A:
w∗

ij = wij

(
nj∑
i wij

)
(3)

where wij are the full sample weights, i indexes the individuals, j indexes the groups, and nj represents the
number of observations in group j.

Method B:

w∗
ij = wij

(∑
i wij∑
i w2

ij

)
(4)

The default scaling method for PISA in the EdSurvey package is Method A for level one weight and no
scaling for higher level weights, following the example in Rabe-Hesketh et al. (2006).

TIMSS Method:
w∗

ij = total student weight
adjusted school-level weight (5)

For TIMSS, TIMSS Advanced, and PIRLS, adjusted student weights are calculated by dividing the total
student weight (TOTWGT) by the adjusted school-level weight (SCHWGT) as explained in the TIMSS 2015
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codebook.2 No further scaling is applied to these weights, and second-level weights are used without scaling as
well.

To implement other weighting schemes, users can choose to scale weights outside the function using their
preferred scaling method and turn off the weight transformation in mixed.sdf by setting
weightTransformation=FALSE. Please refer to Appendix A for an example workflow.

For surveys such as NAEP, there have not been any widely used scaling methods in the literature, so the
EdSurvey package does not do any weight transformation. For surveys with at least some recommendations,
such as TALIS (Carsten, 2009), you can see the suggested methods in Table 1.

For other surveys, users should create their own weights following the weighting scheme recommended
previously.

Mixed-Effects Models With Plausible Values

In the case of plausible values, consider a model where the dependent variable y has K plausible values. The
coefficients β of the plausible values are simply the average of the coefficient calculated for each plausible
value. that is:

β =
∑K

k=1 βk

K
(6)

The variance of the estimated parameters is calculated as the sum of the imputation variance and the sampling
variance.

The imputation variance is defined as follows:

V arImputation = K + 1
(K − 1)K

K∑
k=1

(βk − β)2 (7)

And the sampling variance is defined as follows:

V arSampling =
∑K

k=1 var(βk)
K

(8)

where var(β) is the variance of each plausible value model calculated using a sandwich estimator. The total
variance is then the sum of the imputation and sampling variance. The intraclass correlation also is then
calculated as the average of the intraclass correlation across all models.

2More information can be found at https://timssandpirls.bc.edu/publications/timss/2015-methods/chapter-15.html.
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Table 1. Recommended Weighting Scheme for EdSurvey Data

Survey Implemented
in EdSurvey

Recommended Scaling Citation

PISA Yes Method A for level 2; no scaling for level
2

Koretz, McCaffery,
& Sullivan (2001);
TIMSS (2015)

TIMSS Yes TIMSS Method Koretz et al. (2001);
TIMSS (2015)

TIMSS
Advanced

Yes TIMSS Method Koretz et al. (2001);
TIMSS (2015)

PIRLS Yes TIMSS Method Koretz et al. (2001);
TIMSS (2015)

TALIS No First for teacher-level weights scale
with Final Teacher Weight

Final School Weight and then apply
Method A for student level weights

Carstens (2009)

ECLS-K No No suggestions for multilevel models
ELS No No suggestions for multilevel models
CIVED No User guide does not provide suggestions

for multilevel models, but suggest that
sample design and weighting are the
same as TIMSS.

Schulz & Sibberns
(2004)

ICCS No Student weights should be calculated
as a product of class and student
weight factors; school weights should be
calculated as a product of school weight
factors and level-one weight factors.

Köhler, Weber,
Brese, Schulz, &
Carstens (2016)

ICILS No Level one weights should be calculated
as within-school unit weights, so for
teacher-level analysis, this would be the
product of teacher-level weighting factor
or for student-level analysis, it would be
the product of student level weighting
factors. For level two, weights are
the selection probability of the school
adjusted for nonresponse. So for a
student level analysis this would be
WGTFAC1 x WGTADJ1S; for teacher-
level analysis, it would be WGTFAC1 x
WGTADJ1T.

Jung & Carstens
(2015)

PIAAC No No suggestions for multilevel models
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Appendix A: Example Workflow With Scaling Weights to User
Specification

This example illustrates how the user might implement the student-level weighting as described in the section
on adjusting weights section when using a survey (NAEP in this example) that does not have a weighting
scheme previously implemented.
library(EdSurvey)

# Use NAEP Primer data
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# Subset data to a sample of interest (this step is optional)
sdf <- subset(sdf, scrpsu < 500)

# Extract variables of interest to a light.edsurvey.data.frame
lsdf <- getData(sdf, c("composite","dsex","b017451","scrpsu","origwt","smsrswt"),

addAttributes=TRUE)

# Transform weights using your method (Note that this method is not recommended for NAEP)
lsdf$pwt1 <- lsdf$origwt/lsdf$smsrswt
lsdf$pwt2 <- lsdf$smsrswt

# fast is an argument from WeMix::mix that allows the function to run faster using c++
m1 <- mixed.sdf(composite ~ dsex + b017451 + (1|scrpsu), data=lsdf,

weightVar = c('pwt1', 'pwt2'), fast=TRUE, verbose=1)

# print out result summary
summary(m1)

# Output
# Call:
# mixed.sdf(formula = composite ~ dsex + b017451 + (1 | scrpsu),
# data = lsdf, weightVars = c("pwt1", "pwt2"),
# verbose = 1, fast = TRUE, nQuad = 7)
#
# Formula: composite ~ dsex + b017451 + (1 | scrpsu)
#
#
# Plausible Values: 5
# Number of Groups:
# Group Var Observations Level
# 1 scrpsu 22 2
# 2 Residual 492 1
#
# Variance terms:
# variance Std. Error Std.Dev.
# scrpsu:(Intercept) 661.9544 248.80786 25.72847
# Residual 874.0728 93.27785 29.56472
#
# Fixed Effects:
# Estimate Std. Error t value
# (Intercept) 263.56137 7.73858 34.0581
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# dsexFemale -0.79063 3.15192 -0.2508
# b017451Once every few weeks 1.83987 6.47586 0.2841
# b017451About once a week 10.17583 4.67462 2.1768
# b0174512 or 3 times a week 9.81466 5.54558 1.7698
# b017451Every day 7.08593 6.38682 1.1095
#
# Intraclass Correlation= 0.430
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Appendix B: Examples of different mixed-model formulas

The mixed.sdf function in the EdSurvey package (and the mix function in the WeMix package) use the
same formula syntax as in lme4 package. The following table specifies all formulas currently supported by
EdSurvey 2.2. Note that g denotes the grouping factor and x denotes a covariate or predictor. In R formulas,
1 often denotes Intercept. Because this appendix focuses on the formula specification, the Example does not
show the full code of mixed.sdf. Please refer to the function documentation or pavkage manual to fill in the
missing part.

Formula Alternative Meaning Example
(1 | g) 1 + (1 | g) Random intercept at level

2 for group variable g (null
model)

mixed.sdf(composite ∼ (1 | scrpsu),
...)

x + (1 | g) x + 1 + (1 | g) Random intercept with
fixed slope for predictor x

mixed.sdf(composite ∼ dsex + (1 |
scrpsu), ...)

x + (x | g) 1 + x + (1 + x |
g)

Random intercept and
random slope for predictor
x (coefficients associated
with intercept and random-
effect predictor x are
correlated)

mixed.sdf(composite ∼ dsex + (dsex
| scrpsu), ...)

x + (x || g) 1 + x + (1 | g) +
(0 + x | g)

Random intercept and
random slope for predictor
x (coefficients associated
with intercept and random-
effect predictor x are
uncorrelated)

mixed.sdf(composite ∼ dsex + (dsex
|| scrpsu), ...)
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